1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
// Copyright 2013 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.

//! Internet Protocol (IP) addresses.
//!
//! This module contains functions useful for parsing, formatting, and
//! manipulating IP addresses.

#![allow(missing_docs)]

pub use self::IpAddr::*;

use boxed::Box;
use fmt;
use old_io::{self, IoResult, IoError};
use old_io::net;
use iter::{Iterator, IteratorExt};
use ops::{FnOnce, FnMut};
use option::Option;
use option::Option::{None, Some};
use result::Result::{self, Ok, Err};
use slice::SliceExt;
use str::{FromStr, StrExt};
use vec::Vec;

pub type Port = u16;

#[derive(Copy, PartialEq, Eq, Clone, Hash, Debug)]
pub enum IpAddr {
    Ipv4Addr(u8, u8, u8, u8),
    Ipv6Addr(u16, u16, u16, u16, u16, u16, u16, u16)
}

#[stable(feature = "rust1", since = "1.0.0")]
impl fmt::Display for IpAddr {
    fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
        match *self {
            Ipv4Addr(a, b, c, d) =>
                write!(fmt, "{}.{}.{}.{}", a, b, c, d),

            // Ipv4 Compatible address
            Ipv6Addr(0, 0, 0, 0, 0, 0, g, h) => {
                write!(fmt, "::{}.{}.{}.{}", (g >> 8) as u8, g as u8,
                       (h >> 8) as u8, h as u8)
            }

            // Ipv4-Mapped address
            Ipv6Addr(0, 0, 0, 0, 0, 0xFFFF, g, h) => {
                write!(fmt, "::FFFF:{}.{}.{}.{}", (g >> 8) as u8, g as u8,
                       (h >> 8) as u8, h as u8)
            }

            Ipv6Addr(a, b, c, d, e, f, g, h) =>
                write!(fmt, "{:x}:{:x}:{:x}:{:x}:{:x}:{:x}:{:x}:{:x}",
                       a, b, c, d, e, f, g, h)
        }
    }
}

#[derive(Copy, PartialEq, Eq, Clone, Hash, Debug)]
pub struct SocketAddr {
    pub ip: IpAddr,
    pub port: Port,
}

#[stable(feature = "rust1", since = "1.0.0")]
impl fmt::Display for SocketAddr {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        match self.ip {
            Ipv4Addr(..) => write!(f, "{}:{}", self.ip, self.port),
            Ipv6Addr(..) => write!(f, "[{}]:{}", self.ip, self.port),
        }
    }
}

struct Parser<'a> {
    // parsing as ASCII, so can use byte array
    s: &'a [u8],
    pos: uint,
}

impl<'a> Parser<'a> {
    fn new(s: &'a str) -> Parser<'a> {
        Parser {
            s: s.as_bytes(),
            pos: 0,
        }
    }

    fn is_eof(&self) -> bool {
        self.pos == self.s.len()
    }

    // Commit only if parser returns Some
    fn read_atomically<T, F>(&mut self, cb: F) -> Option<T> where
        F: FnOnce(&mut Parser) -> Option<T>,
    {
        let pos = self.pos;
        let r = cb(self);
        if r.is_none() {
            self.pos = pos;
        }
        r
    }

    // Commit only if parser read till EOF
    fn read_till_eof<T, F>(&mut self, cb: F) -> Option<T> where
        F: FnOnce(&mut Parser) -> Option<T>,
    {
        self.read_atomically(move |p| {
            match cb(p) {
                Some(x) => if p.is_eof() {Some(x)} else {None},
                None => None,
            }
        })
    }

    // Return result of first successful parser
    fn read_or<T>(&mut self, parsers: &mut [Box<FnMut(&mut Parser) -> Option<T>>])
               -> Option<T> {
        for pf in parsers {
            match self.read_atomically(|p: &mut Parser| pf.call_mut((p,))) {
                Some(r) => return Some(r),
                None => {}
            }
        }
        None
    }

    // Apply 3 parsers sequentially
    fn read_seq_3<A, B, C, PA, PB, PC>(&mut self,
                                       pa: PA,
                                       pb: PB,
                                       pc: PC)
                                       -> Option<(A, B, C)> where
        PA: FnOnce(&mut Parser) -> Option<A>,
        PB: FnOnce(&mut Parser) -> Option<B>,
        PC: FnOnce(&mut Parser) -> Option<C>,
    {
        self.read_atomically(move |p| {
            let a = pa(p);
            let b = if a.is_some() { pb(p) } else { None };
            let c = if b.is_some() { pc(p) } else { None };
            match (a, b, c) {
                (Some(a), Some(b), Some(c)) => Some((a, b, c)),
                _ => None
            }
        })
    }

    // Read next char
    fn read_char(&mut self) -> Option<char> {
        if self.is_eof() {
            None
        } else {
            let r = self.s[self.pos] as char;
            self.pos += 1;
            Some(r)
        }
    }

    // Return char and advance iff next char is equal to requested
    fn read_given_char(&mut self, c: char) -> Option<char> {
        self.read_atomically(|p| {
            match p.read_char() {
                Some(next) if next == c => Some(next),
                _ => None,
            }
        })
    }

    // Read digit
    fn read_digit(&mut self, radix: u8) -> Option<u8> {
        fn parse_digit(c: char, radix: u8) -> Option<u8> {
            let c = c as u8;
            // assuming radix is either 10 or 16
            if c >= b'0' && c <= b'9' {
                Some(c - b'0')
            } else if radix > 10 && c >= b'a' && c < b'a' + (radix - 10) {
                Some(c - b'a' + 10)
            } else if radix > 10 && c >= b'A' && c < b'A' + (radix - 10) {
                Some(c - b'A' + 10)
            } else {
                None
            }
        }

        self.read_atomically(|p| {
            p.read_char().and_then(|c| parse_digit(c, radix))
        })
    }

    fn read_number_impl(&mut self, radix: u8, max_digits: u32, upto: u32) -> Option<u32> {
        let mut r = 0u32;
        let mut digit_count = 0;
        loop {
            match self.read_digit(radix) {
                Some(d) => {
                    r = r * (radix as u32) + (d as u32);
                    digit_count += 1;
                    if digit_count > max_digits || r >= upto {
                        return None
                    }
                }
                None => {
                    if digit_count == 0 {
                        return None
                    } else {
                        return Some(r)
                    }
                }
            };
        }
    }

    // Read number, failing if max_digits of number value exceeded
    fn read_number(&mut self, radix: u8, max_digits: u32, upto: u32) -> Option<u32> {
        self.read_atomically(|p| p.read_number_impl(radix, max_digits, upto))
    }

    fn read_ipv4_addr_impl(&mut self) -> Option<IpAddr> {
        let mut bs = [0u8; 4];
        let mut i = 0;
        while i < 4 {
            if i != 0 && self.read_given_char('.').is_none() {
                return None;
            }

            let octet = self.read_number(10, 3, 0x100).map(|n| n as u8);
            match octet {
                Some(d) => bs[i] = d,
                None => return None,
            };
            i += 1;
        }
        Some(Ipv4Addr(bs[0], bs[1], bs[2], bs[3]))
    }

    // Read IPv4 address
    fn read_ipv4_addr(&mut self) -> Option<IpAddr> {
        self.read_atomically(|p| p.read_ipv4_addr_impl())
    }

    fn read_ipv6_addr_impl(&mut self) -> Option<IpAddr> {
        fn ipv6_addr_from_head_tail(head: &[u16], tail: &[u16]) -> IpAddr {
            assert!(head.len() + tail.len() <= 8);
            let mut gs = [0u16; 8];
            gs.clone_from_slice(head);
            gs[(8 - tail.len()) .. 8].clone_from_slice(tail);
            Ipv6Addr(gs[0], gs[1], gs[2], gs[3], gs[4], gs[5], gs[6], gs[7])
        }

        fn read_groups(p: &mut Parser, groups: &mut [u16; 8], limit: uint) -> (uint, bool) {
            let mut i = 0;
            while i < limit {
                if i < limit - 1 {
                    let ipv4 = p.read_atomically(|p| {
                        if i == 0 || p.read_given_char(':').is_some() {
                            p.read_ipv4_addr()
                        } else {
                            None
                        }
                    });
                    match ipv4 {
                        Some(Ipv4Addr(a, b, c, d)) => {
                            groups[i + 0] = ((a as u16) << 8) | (b as u16);
                            groups[i + 1] = ((c as u16) << 8) | (d as u16);
                            return (i + 2, true);
                        }
                        _ => {}
                    }
                }

                let group = p.read_atomically(|p| {
                    if i == 0 || p.read_given_char(':').is_some() {
                        p.read_number(16, 4, 0x10000).map(|n| n as u16)
                    } else {
                        None
                    }
                });
                match group {
                    Some(g) => groups[i] = g,
                    None => return (i, false)
                }
                i += 1;
            }
            (i, false)
        }

        let mut head = [0u16; 8];
        let (head_size, head_ipv4) = read_groups(self, &mut head, 8);

        if head_size == 8 {
            return Some(Ipv6Addr(
                head[0], head[1], head[2], head[3],
                head[4], head[5], head[6], head[7]))
        }

        // IPv4 part is not allowed before `::`
        if head_ipv4 {
            return None
        }

        // read `::` if previous code parsed less than 8 groups
        if !self.read_given_char(':').is_some() || !self.read_given_char(':').is_some() {
            return None;
        }

        let mut tail = [0u16; 8];
        let (tail_size, _) = read_groups(self, &mut tail, 8 - head_size);
        Some(ipv6_addr_from_head_tail(&head[..head_size], &tail[..tail_size]))
    }

    fn read_ipv6_addr(&mut self) -> Option<IpAddr> {
        self.read_atomically(|p| p.read_ipv6_addr_impl())
    }

    fn read_ip_addr(&mut self) -> Option<IpAddr> {
        let ipv4_addr = |p: &mut Parser| p.read_ipv4_addr();
        let ipv6_addr = |p: &mut Parser| p.read_ipv6_addr();
        self.read_or(&mut [box ipv4_addr, box ipv6_addr])
    }

    fn read_socket_addr(&mut self) -> Option<SocketAddr> {
        let ip_addr = |p: &mut Parser| {
            let ipv4_p = |p: &mut Parser| p.read_ip_addr();
            let ipv6_p = |p: &mut Parser| {
                let open_br = |p: &mut Parser| p.read_given_char('[');
                let ip_addr = |p: &mut Parser| p.read_ipv6_addr();
                let clos_br = |p: &mut Parser| p.read_given_char(']');
                p.read_seq_3::<char, IpAddr, char, _, _, _>(open_br, ip_addr, clos_br)
                        .map(|t| match t { (_, ip, _) => ip })
            };
            p.read_or(&mut [box ipv4_p, box ipv6_p])
        };
        let colon = |p: &mut Parser| p.read_given_char(':');
        let port  = |p: &mut Parser| p.read_number(10, 5, 0x10000).map(|n| n as u16);

        // host, colon, port
        self.read_seq_3::<IpAddr, char, u16, _, _, _>(ip_addr, colon, port)
                .map(|t| match t { (ip, _, port) => SocketAddr { ip: ip, port: port } })
    }
}

impl FromStr for IpAddr {
    type Err = ParseError;
    fn from_str(s: &str) -> Result<IpAddr, ParseError> {
        match Parser::new(s).read_till_eof(|p| p.read_ip_addr()) {
            Some(s) => Ok(s),
            None => Err(ParseError),
        }
    }
}

impl FromStr for SocketAddr {
    type Err = ParseError;
    fn from_str(s: &str) -> Result<SocketAddr, ParseError> {
        match Parser::new(s).read_till_eof(|p| p.read_socket_addr()) {
            Some(s) => Ok(s),
            None => Err(ParseError),
        }
    }
}

#[derive(Debug, Clone, PartialEq, Copy)]
pub struct ParseError;

/// A trait for objects which can be converted or resolved to one or more `SocketAddr` values.
///
/// Implementing types minimally have to implement either `to_socket_addr` or `to_socket_addr_all`
/// method, and its trivial counterpart will be available automatically.
///
/// This trait is used for generic address resolution when constructing network objects.
/// By default it is implemented for the following types:
///
///  * `SocketAddr` - `to_socket_addr` is identity function.
///
///  * `(IpAddr, u16)` - `to_socket_addr` constructs `SocketAddr` trivially.
///
///  * `(&str, u16)` - the string should be either a string representation of an IP address
///    expected by `FromStr` implementation for `IpAddr` or a host name.
///
///    For the former, `to_socket_addr_all` returns a vector with a single element corresponding
///    to that IP address joined with the given port.
///
///    For the latter, it tries to resolve the host name and returns a vector of all IP addresses
///    for the host name, each joined with the given port.
///
///  * `&str` - the string should be either a string representation of a `SocketAddr` as
///    expected by its `FromStr` implementation or a string like `<host_name>:<port>` pair
///    where `<port>` is a `u16` value.
///
///    For the former, `to_socket_addr_all` returns a vector with a single element corresponding
///    to that socket address.
///
///    For the latter, it tries to resolve the host name and returns a vector of all IP addresses
///    for the host name, each joined with the port.
///
///
/// This trait allows constructing network objects like `TcpStream` or `UdpSocket` easily with
/// values of various types for the bind/connection address. It is needed because sometimes
/// one type is more appropriate than the other: for simple uses a string like `"localhost:12345"`
/// is much nicer than manual construction of the corresponding `SocketAddr`, but sometimes
/// `SocketAddr` value is *the* main source of the address, and converting it to some other type
/// (e.g. a string) just for it to be converted back to `SocketAddr` in constructor methods
/// is pointless.
///
/// Some examples:
///
/// ```rust,no_run
/// # #![allow(unused_must_use)]
///
/// use std::old_io::{TcpStream, TcpListener};
/// use std::old_io::net::udp::UdpSocket;
/// use std::old_io::net::ip::{Ipv4Addr, SocketAddr};
///
/// fn main() {
///     // The following lines are equivalent modulo possible "localhost" name resolution
///     // differences
///     let tcp_s = TcpStream::connect(SocketAddr { ip: Ipv4Addr(127, 0, 0, 1), port: 12345 });
///     let tcp_s = TcpStream::connect((Ipv4Addr(127, 0, 0, 1), 12345u16));
///     let tcp_s = TcpStream::connect(("127.0.0.1", 12345u16));
///     let tcp_s = TcpStream::connect(("localhost", 12345u16));
///     let tcp_s = TcpStream::connect("127.0.0.1:12345");
///     let tcp_s = TcpStream::connect("localhost:12345");
///
///     // TcpListener::bind(), UdpSocket::bind() and UdpSocket::send_to() behave similarly
///     let tcp_l = TcpListener::bind("localhost:12345");
///
///     let mut udp_s = UdpSocket::bind(("127.0.0.1", 23451u16)).unwrap();
///     udp_s.send_to([7u8, 7u8, 7u8].as_slice(), (Ipv4Addr(127, 0, 0, 1), 23451u16));
/// }
/// ```
pub trait ToSocketAddr {
    /// Converts this object to single socket address value.
    ///
    /// If more than one value is available, this method returns the first one. If no
    /// values are available, this method returns an `IoError`.
    ///
    /// By default this method delegates to `to_socket_addr_all` method, taking the first
    /// item from its result.
    fn to_socket_addr(&self) -> IoResult<SocketAddr> {
        self.to_socket_addr_all()
            .and_then(|v| v.into_iter().next().ok_or_else(|| IoError {
                kind: old_io::InvalidInput,
                desc: "no address available",
                detail: None
            }))
    }

    /// Converts this object to all available socket address values.
    ///
    /// Some values like host name string naturally correspond to multiple IP addresses.
    /// This method tries to return all available addresses corresponding to this object.
    ///
    /// By default this method delegates to `to_socket_addr` method, creating a singleton
    /// vector from its result.
    #[inline]
    fn to_socket_addr_all(&self) -> IoResult<Vec<SocketAddr>> {
        self.to_socket_addr().map(|a| vec![a])
    }
}

impl ToSocketAddr for SocketAddr {
    #[inline]
    fn to_socket_addr(&self) -> IoResult<SocketAddr> { Ok(*self) }
}

impl ToSocketAddr for (IpAddr, u16) {
    #[inline]
    fn to_socket_addr(&self) -> IoResult<SocketAddr> {
        let (ip, port) = *self;
        Ok(SocketAddr { ip: ip, port: port })
    }
}

fn resolve_socket_addr(s: &str, p: u16) -> IoResult<Vec<SocketAddr>> {
    net::get_host_addresses(s)
        .map(|v| v.into_iter().map(|a| SocketAddr { ip: a, port: p }).collect())
}

fn parse_and_resolve_socket_addr(s: &str) -> IoResult<Vec<SocketAddr>> {
    macro_rules! try_opt {
        ($e:expr, $msg:expr) => (
            match $e {
                Some(r) => r,
                None => return Err(IoError {
                    kind: old_io::InvalidInput,
                    desc: $msg,
                    detail: None
                })
            }
        )
    }

    // split the string by ':' and convert the second part to u16
    let mut parts_iter = s.rsplitn(2, ':');
    let port_str = try_opt!(parts_iter.next(), "invalid socket address");
    let host = try_opt!(parts_iter.next(), "invalid socket address");
    let port: u16 = try_opt!(port_str.parse().ok(), "invalid port value");
    resolve_socket_addr(host, port)
}

impl<'a> ToSocketAddr for (&'a str, u16) {
    fn to_socket_addr_all(&self) -> IoResult<Vec<SocketAddr>> {
        let (host, port) = *self;

        // try to parse the host as a regular IpAddr first
        match host.parse().ok() {
            Some(addr) => return Ok(vec![SocketAddr {
                ip: addr,
                port: port
            }]),
            None => {}
        }

        resolve_socket_addr(host, port)
    }
}

// accepts strings like 'localhost:12345'
impl<'a> ToSocketAddr for &'a str {
    fn to_socket_addr(&self) -> IoResult<SocketAddr> {
        // try to parse as a regular SocketAddr first
        match self.parse().ok() {
            Some(addr) => return Ok(addr),
            None => {}
        }

        parse_and_resolve_socket_addr(*self)
            .and_then(|v| v.into_iter().next()
                .ok_or_else(|| IoError {
                    kind: old_io::InvalidInput,
                    desc: "no address available",
                    detail: None
                })
            )
    }

    fn to_socket_addr_all(&self) -> IoResult<Vec<SocketAddr>> {
        // try to parse as a regular SocketAddr first
        match self.parse().ok() {
            Some(addr) => return Ok(vec![addr]),
            None => {}
        }

        parse_and_resolve_socket_addr(*self)
    }
}


#[cfg(test)]
mod test {
    use prelude::v1::*;
    use super::*;
    use str::FromStr;

    #[test]
    fn test_from_str_ipv4() {
        assert_eq!(Ok(Ipv4Addr(127, 0, 0, 1)), "127.0.0.1".parse());
        assert_eq!(Ok(Ipv4Addr(255, 255, 255, 255)), "255.255.255.255".parse());
        assert_eq!(Ok(Ipv4Addr(0, 0, 0, 0)), "0.0.0.0".parse());

        // out of range
        let none: Option<IpAddr> = "256.0.0.1".parse().ok();
        assert_eq!(None, none);
        // too short
        let none: Option<IpAddr> = "255.0.0".parse().ok();
        assert_eq!(None, none);
        // too long
        let none: Option<IpAddr> = "255.0.0.1.2".parse().ok();
        assert_eq!(None, none);
        // no number between dots
        let none: Option<IpAddr> = "255.0..1".parse().ok();
        assert_eq!(None, none);
    }

    #[test]
    fn test_from_str_ipv6() {
        assert_eq!(Ok(Ipv6Addr(0, 0, 0, 0, 0, 0, 0, 0)), "0:0:0:0:0:0:0:0".parse());
        assert_eq!(Ok(Ipv6Addr(0, 0, 0, 0, 0, 0, 0, 1)), "0:0:0:0:0:0:0:1".parse());

        assert_eq!(Ok(Ipv6Addr(0, 0, 0, 0, 0, 0, 0, 1)), "::1".parse());
        assert_eq!(Ok(Ipv6Addr(0, 0, 0, 0, 0, 0, 0, 0)), "::".parse());

        assert_eq!(Ok(Ipv6Addr(0x2a02, 0x6b8, 0, 0, 0, 0, 0x11, 0x11)),
                "2a02:6b8::11:11".parse());

        // too long group
        let none: Option<IpAddr> = "::00000".parse().ok();
        assert_eq!(None, none);
        // too short
        let none: Option<IpAddr> = "1:2:3:4:5:6:7".parse().ok();
        assert_eq!(None, none);
        // too long
        let none: Option<IpAddr> = "1:2:3:4:5:6:7:8:9".parse().ok();
        assert_eq!(None, none);
        // triple colon
        let none: Option<IpAddr> = "1:2:::6:7:8".parse().ok();
        assert_eq!(None, none);
        // two double colons
        let none: Option<IpAddr> = "1:2::6::8".parse().ok();
        assert_eq!(None, none);
    }

    #[test]
    fn test_from_str_ipv4_in_ipv6() {
        assert_eq!(Ok(Ipv6Addr(0, 0, 0, 0, 0, 0, 49152, 545)),
                "::192.0.2.33".parse());
        assert_eq!(Ok(Ipv6Addr(0, 0, 0, 0, 0, 0xFFFF, 49152, 545)),
                "::FFFF:192.0.2.33".parse());
        assert_eq!(Ok(Ipv6Addr(0x64, 0xff9b, 0, 0, 0, 0, 49152, 545)),
                "64:ff9b::192.0.2.33".parse());
        assert_eq!(Ok(Ipv6Addr(0x2001, 0xdb8, 0x122, 0xc000, 0x2, 0x2100, 49152, 545)),
                "2001:db8:122:c000:2:2100:192.0.2.33".parse());

        // colon after v4
        let none: Option<IpAddr> = "::127.0.0.1:".parse().ok();
        assert_eq!(None, none);
        // not enough groups
        let none: Option<IpAddr> = "1.2.3.4.5:127.0.0.1".parse().ok();
        assert_eq!(None, none);
        // too many groups
        let none: Option<IpAddr> = "1.2.3.4.5:6:7:127.0.0.1".parse().ok();
        assert_eq!(None, none);
    }

    #[test]
    fn test_from_str_socket_addr() {
        assert_eq!(Ok(SocketAddr { ip: Ipv4Addr(77, 88, 21, 11), port: 80 }),
                "77.88.21.11:80".parse());
        assert_eq!(Ok(SocketAddr { ip: Ipv6Addr(0x2a02, 0x6b8, 0, 1, 0, 0, 0, 1), port: 53 }),
                "[2a02:6b8:0:1::1]:53".parse());
        assert_eq!(Ok(SocketAddr { ip: Ipv6Addr(0, 0, 0, 0, 0, 0, 0x7F00, 1), port: 22 }),
                "[::127.0.0.1]:22".parse());

        // without port
        let none: Option<SocketAddr> = "127.0.0.1".parse().ok();
        assert_eq!(None, none);
        // without port
        let none: Option<SocketAddr> = "127.0.0.1:".parse().ok();
        assert_eq!(None, none);
        // wrong brackets around v4
        let none: Option<SocketAddr> = "[127.0.0.1]:22".parse().ok();
        assert_eq!(None, none);
        // port out of range
        let none: Option<SocketAddr> = "127.0.0.1:123456".parse().ok();
        assert_eq!(None, none);
    }

    #[test]
    fn ipv6_addr_to_string() {
        let a1 = Ipv6Addr(0, 0, 0, 0, 0, 0xffff, 0xc000, 0x280);
        assert!(a1.to_string() == "::ffff:192.0.2.128" ||
                a1.to_string() == "::FFFF:192.0.2.128");
        assert_eq!(Ipv6Addr(8, 9, 10, 11, 12, 13, 14, 15).to_string(),
                   "8:9:a:b:c:d:e:f");
    }

    #[test]
    fn to_socket_addr_socketaddr() {
        let a = SocketAddr { ip: Ipv4Addr(77, 88, 21, 11), port: 12345 };
        assert_eq!(Ok(a), a.to_socket_addr());
        assert_eq!(Ok(vec![a]), a.to_socket_addr_all());
    }

    #[test]
    fn to_socket_addr_ipaddr_u16() {
        let a = Ipv4Addr(77, 88, 21, 11);
        let p = 12345u16;
        let e = SocketAddr { ip: a, port: p };
        assert_eq!(Ok(e), (a, p).to_socket_addr());
        assert_eq!(Ok(vec![e]), (a, p).to_socket_addr_all());
    }

    #[test]
    fn to_socket_addr_str_u16() {
        let a = SocketAddr { ip: Ipv4Addr(77, 88, 21, 11), port: 24352 };
        assert_eq!(Ok(a), ("77.88.21.11", 24352u16).to_socket_addr());
        assert_eq!(Ok(vec![a]), ("77.88.21.11", 24352u16).to_socket_addr_all());

        let a = SocketAddr { ip: Ipv6Addr(0x2a02, 0x6b8, 0, 1, 0, 0, 0, 1), port: 53 };
        assert_eq!(Ok(a), ("2a02:6b8:0:1::1", 53).to_socket_addr());
        assert_eq!(Ok(vec![a]), ("2a02:6b8:0:1::1", 53).to_socket_addr_all());

        let a = SocketAddr { ip: Ipv4Addr(127, 0, 0, 1), port: 23924 };
        assert!(("localhost", 23924u16).to_socket_addr_all().unwrap().contains(&a));
    }

    #[test]
    fn to_socket_addr_str() {
        let a = SocketAddr { ip: Ipv4Addr(77, 88, 21, 11), port: 24352 };
        assert_eq!(Ok(a), "77.88.21.11:24352".to_socket_addr());
        assert_eq!(Ok(vec![a]), "77.88.21.11:24352".to_socket_addr_all());

        let a = SocketAddr { ip: Ipv6Addr(0x2a02, 0x6b8, 0, 1, 0, 0, 0, 1), port: 53 };
        assert_eq!(Ok(a), "[2a02:6b8:0:1::1]:53".to_socket_addr());
        assert_eq!(Ok(vec![a]), "[2a02:6b8:0:1::1]:53".to_socket_addr_all());

        let a = SocketAddr { ip: Ipv4Addr(127, 0, 0, 1), port: 23924 };
        assert!("localhost:23924".to_socket_addr_all().unwrap().contains(&a));
    }
}