1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
// Copyright 2013 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.

//! Utilities for random number generation
//!
//! The key functions are `random()` and `Rng::gen()`. These are polymorphic
//! and so can be used to generate any type that implements `Rand`. Type inference
//! means that often a simple call to `rand::random()` or `rng.gen()` will
//! suffice, but sometimes an annotation is required, e.g. `rand::random::<f64>()`.
//!
//! See the `distributions` submodule for sampling random numbers from
//! distributions like normal and exponential.
//!
//! # Thread-local RNG
//!
//! There is built-in support for a RNG associated with each thread stored
//! in thread-local storage. This RNG can be accessed via `thread_rng`, or
//! used implicitly via `random`. This RNG is normally randomly seeded
//! from an operating-system source of randomness, e.g. `/dev/urandom` on
//! Unix systems, and will automatically reseed itself from this source
//! after generating 32 KiB of random data.
//!
//! # Cryptographic security
//!
//! An application that requires an entropy source for cryptographic purposes
//! must use `OsRng`, which reads randomness from the source that the operating
//! system provides (e.g. `/dev/urandom` on Unixes or `CryptGenRandom()` on Windows).
//! The other random number generators provided by this module are not suitable
//! for such purposes.
//!
//! *Note*: many Unix systems provide `/dev/random` as well as `/dev/urandom`.
//! This module uses `/dev/urandom` for the following reasons:
//!
//! -   On Linux, `/dev/random` may block if entropy pool is empty; `/dev/urandom` will not block.
//!     This does not mean that `/dev/random` provides better output than
//!     `/dev/urandom`; the kernel internally runs a cryptographically secure pseudorandom
//!     number generator (CSPRNG) based on entropy pool for random number generation,
//!     so the "quality" of `/dev/random` is not better than `/dev/urandom` in most cases.
//!     However, this means that `/dev/urandom` can yield somewhat predictable randomness
//!     if the entropy pool is very small, such as immediately after first booting.
//!     Linux 3.17 added the `getrandom(2)` system call which solves the issue: it blocks if entropy
//!     pool is not initialized yet, but it does not block once initialized.
//!     `OsRng` tries to use `getrandom(2)` if available, and use `/dev/urandom` fallback if not.
//!     If an application does not have `getrandom` and likely to be run soon after first booting,
//!     or on a system with very few entropy sources, one should consider using `/dev/random` via
//!     `ReaderRng`.
//! -   On some systems (e.g. FreeBSD, OpenBSD and Mac OS X) there is no difference
//!     between the two sources. (Also note that, on some systems e.g. FreeBSD, both `/dev/random`
//!     and `/dev/urandom` may block once if the CSPRNG has not seeded yet.)
//!
//! # Examples
//!
//! ```rust
//! use std::rand;
//! use std::rand::Rng;
//!
//! let mut rng = rand::thread_rng();
//! if rng.gen() { // random bool
//!     println!("int: {}, uint: {}", rng.gen::<int>(), rng.gen::<uint>())
//! }
//! ```
//!
//! ```rust
//! use std::rand;
//!
//! let tuple = rand::random::<(f64, char)>();
//! println!("{:?}", tuple)
//! ```
//!
//! ## Monte Carlo estimation of π
//!
//! For this example, imagine we have a square with sides of length 2 and a unit
//! circle, both centered at the origin. Since the area of a unit circle is π,
//! we have:
//!
//! ```text
//!     (area of unit circle) / (area of square) = π / 4
//! ```
//!
//! So if we sample many points randomly from the square, roughly π / 4 of them
//! should be inside the circle.
//!
//! We can use the above fact to estimate the value of π: pick many points in the
//! square at random, calculate the fraction that fall within the circle, and
//! multiply this fraction by 4.
//!
//! ```
//! use std::rand;
//! use std::rand::distributions::{IndependentSample, Range};
//!
//! fn main() {
//!    let between = Range::new(-1f64, 1.);
//!    let mut rng = rand::thread_rng();
//!
//!    let total = 1_000_000;
//!    let mut in_circle = 0;
//!
//!    for _ in 0..total {
//!        let a = between.ind_sample(&mut rng);
//!        let b = between.ind_sample(&mut rng);
//!        if a*a + b*b <= 1. {
//!            in_circle += 1;
//!        }
//!    }
//!
//!    // prints something close to 3.14159...
//!    println!("{}", 4. * (in_circle as f64) / (total as f64));
//! }
//! ```
//!
//! ## Monty Hall Problem
//!
//! This is a simulation of the [Monty Hall Problem][]:
//!
//! > Suppose you're on a game show, and you're given the choice of three doors:
//! > Behind one door is a car; behind the others, goats. You pick a door, say No. 1,
//! > and the host, who knows what's behind the doors, opens another door, say No. 3,
//! > which has a goat. He then says to you, "Do you want to pick door No. 2?"
//! > Is it to your advantage to switch your choice?
//!
//! The rather unintuitive answer is that you will have a 2/3 chance of winning if
//! you switch and a 1/3 chance of winning if you don't, so it's better to switch.
//!
//! This program will simulate the game show and with large enough simulation steps
//! it will indeed confirm that it is better to switch.
//!
//! [Monty Hall Problem]: http://en.wikipedia.org/wiki/Monty_Hall_problem
//!
//! ```
//! use std::rand;
//! use std::rand::Rng;
//! use std::rand::distributions::{IndependentSample, Range};
//!
//! struct SimulationResult {
//!     win: bool,
//!     switch: bool,
//! }
//!
//! // Run a single simulation of the Monty Hall problem.
//! fn simulate<R: Rng>(random_door: &Range<uint>, rng: &mut R) -> SimulationResult {
//!     let car = random_door.ind_sample(rng);
//!
//!     // This is our initial choice
//!     let mut choice = random_door.ind_sample(rng);
//!
//!     // The game host opens a door
//!     let open = game_host_open(car, choice, rng);
//!
//!     // Shall we switch?
//!     let switch = rng.gen();
//!     if switch {
//!         choice = switch_door(choice, open);
//!     }
//!
//!     SimulationResult { win: choice == car, switch: switch }
//! }
//!
//! // Returns the door the game host opens given our choice and knowledge of
//! // where the car is. The game host will never open the door with the car.
//! fn game_host_open<R: Rng>(car: uint, choice: uint, rng: &mut R) -> uint {
//!     let choices = free_doors(&[car, choice]);
//!     rand::sample(rng, choices.into_iter(), 1)[0]
//! }
//!
//! // Returns the door we switch to, given our current choice and
//! // the open door. There will only be one valid door.
//! fn switch_door(choice: uint, open: uint) -> uint {
//!     free_doors(&[choice, open])[0]
//! }
//!
//! fn free_doors(blocked: &[uint]) -> Vec<uint> {
//!     (0..3).filter(|x| !blocked.contains(x)).collect()
//! }
//!
//! fn main() {
//!     // The estimation will be more accurate with more simulations
//!     let num_simulations = 10000;
//!
//!     let mut rng = rand::thread_rng();
//!     let random_door = Range::new(0, 3);
//!
//!     let (mut switch_wins, mut switch_losses) = (0, 0);
//!     let (mut keep_wins, mut keep_losses) = (0, 0);
//!
//!     println!("Running {} simulations...", num_simulations);
//!     for _ in 0..num_simulations {
//!         let result = simulate(&random_door, &mut rng);
//!
//!         match (result.win, result.switch) {
//!             (true, true) => switch_wins += 1,
//!             (true, false) => keep_wins += 1,
//!             (false, true) => switch_losses += 1,
//!             (false, false) => keep_losses += 1,
//!         }
//!     }
//!
//!     let total_switches = switch_wins + switch_losses;
//!     let total_keeps = keep_wins + keep_losses;
//!
//!     println!("Switched door {} times with {} wins and {} losses",
//!              total_switches, switch_wins, switch_losses);
//!
//!     println!("Kept our choice {} times with {} wins and {} losses",
//!              total_keeps, keep_wins, keep_losses);
//!
//!     // With a large number of simulations, the values should converge to
//!     // 0.667 and 0.333 respectively.
//!     println!("Estimated chance to win if we switch: {}",
//!              switch_wins as f32 / total_switches as f32);
//!     println!("Estimated chance to win if we don't: {}",
//!              keep_wins as f32 / total_keeps as f32);
//! }
//! ```

#![unstable(feature = "rand")]
#![deprecated(reason = "use the crates.io `rand` library instead",
              since = "1.0.0-alpha")]
#![allow(deprecated)]

use cell::RefCell;
use clone::Clone;
use old_io::IoResult;
use iter::{Iterator, IteratorExt};
use mem;
use rc::Rc;
use result::Result::{Ok, Err};
use vec::Vec;

#[cfg(target_pointer_width = "32")]
use core_rand::IsaacRng as IsaacWordRng;
#[cfg(target_pointer_width = "64")]
use core_rand::Isaac64Rng as IsaacWordRng;

pub use core_rand::{Rand, Rng, SeedableRng, Open01, Closed01};
pub use core_rand::{XorShiftRng, IsaacRng, Isaac64Rng, ChaChaRng};
pub use core_rand::{distributions, reseeding};
pub use rand::os::OsRng;

pub mod os;
pub mod reader;

/// The standard RNG. This is designed to be efficient on the current
/// platform.
#[derive(Copy, Clone)]
pub struct StdRng {
    rng: IsaacWordRng,
}

impl StdRng {
    /// Create a randomly seeded instance of `StdRng`.
    ///
    /// This is a very expensive operation as it has to read
    /// randomness from the operating system and use this in an
    /// expensive seeding operation. If one is only generating a small
    /// number of random numbers, or doesn't need the utmost speed for
    /// generating each number, `thread_rng` and/or `random` may be more
    /// appropriate.
    ///
    /// Reading the randomness from the OS may fail, and any error is
    /// propagated via the `IoResult` return value.
    pub fn new() -> IoResult<StdRng> {
        OsRng::new().map(|mut r| StdRng { rng: r.gen() })
    }
}

impl Rng for StdRng {
    #[inline]
    fn next_u32(&mut self) -> u32 {
        self.rng.next_u32()
    }

    #[inline]
    fn next_u64(&mut self) -> u64 {
        self.rng.next_u64()
    }
}

impl<'a> SeedableRng<&'a [usize]> for StdRng {
    fn reseed(&mut self, seed: &'a [usize]) {
        // the internal RNG can just be seeded from the above
        // randomness.
        self.rng.reseed(unsafe {mem::transmute(seed)})
    }

    fn from_seed(seed: &'a [usize]) -> StdRng {
        StdRng { rng: SeedableRng::from_seed(unsafe {mem::transmute(seed)}) }
    }
}

/// Create a weak random number generator with a default algorithm and seed.
///
/// It returns the fastest `Rng` algorithm currently available in Rust without
/// consideration for cryptography or security. If you require a specifically
/// seeded `Rng` for consistency over time you should pick one algorithm and
/// create the `Rng` yourself.
///
/// This will read randomness from the operating system to seed the
/// generator.
pub fn weak_rng() -> XorShiftRng {
    match OsRng::new() {
        Ok(mut r) => r.gen(),
        Err(e) => panic!("weak_rng: failed to create seeded RNG: {:?}", e)
    }
}

/// Controls how the thread-local RNG is reseeded.
struct ThreadRngReseeder;

impl reseeding::Reseeder<StdRng> for ThreadRngReseeder {
    fn reseed(&mut self, rng: &mut StdRng) {
        *rng = match StdRng::new() {
            Ok(r) => r,
            Err(e) => panic!("could not reseed thread_rng: {}", e)
        }
    }
}
static THREAD_RNG_RESEED_THRESHOLD: usize = 32_768;
type ThreadRngInner = reseeding::ReseedingRng<StdRng, ThreadRngReseeder>;

/// The thread-local RNG.
#[derive(Clone)]
pub struct ThreadRng {
    rng: Rc<RefCell<ThreadRngInner>>,
}

/// Retrieve the lazily-initialized thread-local random number
/// generator, seeded by the system. Intended to be used in method
/// chaining style, e.g. `thread_rng().gen::<int>()`.
///
/// The RNG provided will reseed itself from the operating system
/// after generating a certain amount of randomness.
///
/// The internal RNG used is platform and architecture dependent, even
/// if the operating system random number generator is rigged to give
/// the same sequence always. If absolute consistency is required,
/// explicitly select an RNG, e.g. `IsaacRng` or `Isaac64Rng`.
pub fn thread_rng() -> ThreadRng {
    // used to make space in TLS for a random number generator
    thread_local!(static THREAD_RNG_KEY: Rc<RefCell<ThreadRngInner>> = {
        let r = match StdRng::new() {
            Ok(r) => r,
            Err(e) => panic!("could not initialize thread_rng: {}", e)
        };
        let rng = reseeding::ReseedingRng::new(r,
                                               THREAD_RNG_RESEED_THRESHOLD,
                                               ThreadRngReseeder);
        Rc::new(RefCell::new(rng))
    });

    ThreadRng { rng: THREAD_RNG_KEY.with(|t| t.clone()) }
}

impl Rng for ThreadRng {
    fn next_u32(&mut self) -> u32 {
        self.rng.borrow_mut().next_u32()
    }

    fn next_u64(&mut self) -> u64 {
        self.rng.borrow_mut().next_u64()
    }

    #[inline]
    fn fill_bytes(&mut self, bytes: &mut [u8]) {
        self.rng.borrow_mut().fill_bytes(bytes)
    }
}

/// Generates a random value using the thread-local random number generator.
///
/// `random()` can generate various types of random things, and so may require
/// type hinting to generate the specific type you want.
///
/// This function uses the thread local random number generator. This means
/// that if you're calling `random()` in a loop, caching the generator can
/// increase performance. An example is shown below.
///
/// # Examples
///
/// ```
/// use std::rand;
///
/// let x = rand::random();
/// println!("{}", 2u8 * x);
///
/// let y = rand::random::<f64>();
/// println!("{}", y);
///
/// if rand::random() { // generates a boolean
///     println!("Better lucky than good!");
/// }
/// ```
///
/// Caching the thread local random number generator:
///
/// ```
/// use std::rand;
/// use std::rand::Rng;
///
/// let mut v = vec![1, 2, 3];
///
/// for x in v.iter_mut() {
///     *x = rand::random()
/// }
///
/// // would be faster as
///
/// let mut rng = rand::thread_rng();
///
/// for x in v.iter_mut() {
///     *x = rng.gen();
/// }
/// ```
#[inline]
pub fn random<T: Rand>() -> T {
    thread_rng().gen()
}

/// Randomly sample up to `amount` elements from an iterator.
///
/// # Example
///
/// ```rust
/// use std::rand::{thread_rng, sample};
///
/// let mut rng = thread_rng();
/// let sample = sample(&mut rng, 1..100, 5);
/// println!("{:?}", sample);
/// ```
pub fn sample<T, I: Iterator<Item=T>, R: Rng>(rng: &mut R,
                                         mut iter: I,
                                         amount: usize) -> Vec<T> {
    let mut reservoir: Vec<T> = iter.by_ref().take(amount).collect();
    for (i, elem) in iter.enumerate() {
        let k = rng.gen_range(0, i + 1 + amount);
        if k < amount {
            reservoir[k] = elem;
        }
    }
    return reservoir;
}

#[cfg(test)]
mod test {
    use prelude::v1::*;
    use super::{Rng, thread_rng, random, SeedableRng, StdRng, sample};
    use iter::{order, repeat};

    struct ConstRng { i: u64 }
    impl Rng for ConstRng {
        fn next_u32(&mut self) -> u32 { self.i as u32 }
        fn next_u64(&mut self) -> u64 { self.i }

        // no fill_bytes on purpose
    }

    #[test]
    fn test_fill_bytes_default() {
        let mut r = ConstRng { i: 0x11_22_33_44_55_66_77_88 };

        // check every remainder mod 8, both in small and big vectors.
        let lengths = [0, 1, 2, 3, 4, 5, 6, 7,
                       80, 81, 82, 83, 84, 85, 86, 87];
        for &n in &lengths {
            let mut v = repeat(0u8).take(n).collect::<Vec<_>>();
            r.fill_bytes(&mut v);

            // use this to get nicer error messages.
            for (i, &byte) in v.iter().enumerate() {
                if byte == 0 {
                    panic!("byte {} of {} is zero", i, n)
                }
            }
        }
    }

    #[test]
    fn test_gen_range() {
        let mut r = thread_rng();
        for _ in 0..1000 {
            let a = r.gen_range(-3, 42);
            assert!(a >= -3 && a < 42);
            assert_eq!(r.gen_range(0, 1), 0);
            assert_eq!(r.gen_range(-12, -11), -12);
        }

        for _ in 0..1000 {
            let a = r.gen_range(10, 42);
            assert!(a >= 10 && a < 42);
            assert_eq!(r.gen_range(0, 1), 0);
            assert_eq!(r.gen_range(3_000_000, 3_000_001), 3_000_000);
        }

    }

    #[test]
    #[should_fail]
    fn test_gen_range_panic_int() {
        let mut r = thread_rng();
        r.gen_range(5, -2);
    }

    #[test]
    #[should_fail]
    fn test_gen_range_panic_uint() {
        let mut r = thread_rng();
        r.gen_range(5, 2);
    }

    #[test]
    fn test_gen_f64() {
        let mut r = thread_rng();
        let a = r.gen::<f64>();
        let b = r.gen::<f64>();
        debug!("{:?}", (a, b));
    }

    #[test]
    fn test_gen_weighted_bool() {
        let mut r = thread_rng();
        assert_eq!(r.gen_weighted_bool(0), true);
        assert_eq!(r.gen_weighted_bool(1), true);
    }

    #[test]
    fn test_gen_ascii_str() {
        let mut r = thread_rng();
        assert_eq!(r.gen_ascii_chars().take(0).count(), 0);
        assert_eq!(r.gen_ascii_chars().take(10).count(), 10);
        assert_eq!(r.gen_ascii_chars().take(16).count(), 16);
    }

    #[test]
    fn test_gen_vec() {
        let mut r = thread_rng();
        assert_eq!(r.gen_iter::<u8>().take(0).count(), 0);
        assert_eq!(r.gen_iter::<u8>().take(10).count(), 10);
        assert_eq!(r.gen_iter::<f64>().take(16).count(), 16);
    }

    #[test]
    fn test_choose() {
        let mut r = thread_rng();
        assert_eq!(r.choose(&[1, 1, 1]).cloned(), Some(1));

        let v: &[int] = &[];
        assert_eq!(r.choose(v), None);
    }

    #[test]
    fn test_shuffle() {
        let mut r = thread_rng();
        let empty: &mut [int] = &mut [];
        r.shuffle(empty);
        let mut one = [1];
        r.shuffle(&mut one);
        let b: &[_] = &[1];
        assert_eq!(one, b);

        let mut two = [1, 2];
        r.shuffle(&mut two);
        assert!(two == [1, 2] || two == [2, 1]);

        let mut x = [1, 1, 1];
        r.shuffle(&mut x);
        let b: &[_] = &[1, 1, 1];
        assert_eq!(x, b);
    }

    #[test]
    fn test_thread_rng() {
        let mut r = thread_rng();
        r.gen::<int>();
        let mut v = [1, 1, 1];
        r.shuffle(&mut v);
        let b: &[_] = &[1, 1, 1];
        assert_eq!(v, b);
        assert_eq!(r.gen_range(0, 1), 0);
    }

    #[test]
    fn test_random() {
        // not sure how to test this aside from just getting some values
        let _n : uint = random();
        let _f : f32 = random();
        let _o : Option<Option<i8>> = random();
        let _many : ((),
                     (uint,
                      int,
                      Option<(u32, (bool,))>),
                     (u8, i8, u16, i16, u32, i32, u64, i64),
                     (f32, (f64, (f64,)))) = random();
    }

    #[test]
    fn test_sample() {
        let min_val = 1;
        let max_val = 100;

        let mut r = thread_rng();
        let vals = (min_val..max_val).collect::<Vec<int>>();
        let small_sample = sample(&mut r, vals.iter(), 5);
        let large_sample = sample(&mut r, vals.iter(), vals.len() + 5);

        assert_eq!(small_sample.len(), 5);
        assert_eq!(large_sample.len(), vals.len());

        assert!(small_sample.iter().all(|e| {
            **e >= min_val && **e <= max_val
        }));
    }

    #[test]
    fn test_std_rng_seeded() {
        let s = thread_rng().gen_iter::<uint>().take(256).collect::<Vec<uint>>();
        let mut ra: StdRng = SeedableRng::from_seed(&*s);
        let mut rb: StdRng = SeedableRng::from_seed(&*s);
        assert!(order::equals(ra.gen_ascii_chars().take(100),
                              rb.gen_ascii_chars().take(100)));
    }

    #[test]
    fn test_std_rng_reseed() {
        let s = thread_rng().gen_iter::<uint>().take(256).collect::<Vec<uint>>();
        let mut r: StdRng = SeedableRng::from_seed(&*s);
        let string1 = r.gen_ascii_chars().take(100).collect::<String>();

        r.reseed(&s);

        let string2 = r.gen_ascii_chars().take(100).collect::<String>();
        assert_eq!(string1, string2);
    }
}

#[cfg(test)]
static RAND_BENCH_N: u64 = 100;

#[cfg(test)]
mod bench {
    extern crate test;
    use prelude::v1::*;

    use self::test::Bencher;
    use super::{XorShiftRng, StdRng, IsaacRng, Isaac64Rng, Rng, RAND_BENCH_N};
    use super::{OsRng, weak_rng};
    use mem::size_of;

    #[bench]
    fn rand_xorshift(b: &mut Bencher) {
        let mut rng: XorShiftRng = OsRng::new().unwrap().gen();
        b.iter(|| {
            for _ in 0..RAND_BENCH_N {
                rng.gen::<uint>();
            }
        });
        b.bytes = size_of::<uint>() as u64 * RAND_BENCH_N;
    }

    #[bench]
    fn rand_isaac(b: &mut Bencher) {
        let mut rng: IsaacRng = OsRng::new().unwrap().gen();
        b.iter(|| {
            for _ in 0..RAND_BENCH_N {
                rng.gen::<uint>();
            }
        });
        b.bytes = size_of::<uint>() as u64 * RAND_BENCH_N;
    }

    #[bench]
    fn rand_isaac64(b: &mut Bencher) {
        let mut rng: Isaac64Rng = OsRng::new().unwrap().gen();
        b.iter(|| {
            for _ in 0..RAND_BENCH_N {
                rng.gen::<uint>();
            }
        });
        b.bytes = size_of::<uint>() as u64 * RAND_BENCH_N;
    }

    #[bench]
    fn rand_std(b: &mut Bencher) {
        let mut rng = StdRng::new().unwrap();
        b.iter(|| {
            for _ in 0..RAND_BENCH_N {
                rng.gen::<uint>();
            }
        });
        b.bytes = size_of::<uint>() as u64 * RAND_BENCH_N;
    }

    #[bench]
    fn rand_shuffle_100(b: &mut Bencher) {
        let mut rng = weak_rng();
        let x : &mut[uint] = &mut [1; 100];
        b.iter(|| {
            rng.shuffle(x);
        })
    }
}