1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
// Copyright 2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.

use prelude::v1::*;

use sync::atomic::{AtomicUsize, Ordering, ATOMIC_USIZE_INIT};
use sync::poison::{self, LockResult};
use sys::time::SteadyTime;
use sys_common::condvar as sys;
use sys_common::mutex as sys_mutex;
use time::Duration;
use sync::{mutex, MutexGuard, PoisonError};

/// A Condition Variable
///
/// Condition variables represent the ability to block a thread such that it
/// consumes no CPU time while waiting for an event to occur. Condition
/// variables are typically associated with a boolean predicate (a condition)
/// and a mutex. The predicate is always verified inside of the mutex before
/// determining that thread must block.
///
/// Functions in this module will block the current **thread** of execution and
/// are bindings to system-provided condition variables where possible. Note
/// that this module places one additional restriction over the system condition
/// variables: each condvar can be used with precisely one mutex at runtime. Any
/// attempt to use multiple mutexes on the same condition variable will result
/// in a runtime panic. If this is not desired, then the unsafe primitives in
/// `sys` do not have this restriction but may result in undefined behavior.
///
/// # Example
///
/// ```
/// use std::sync::{Arc, Mutex, Condvar};
/// use std::thread;
///
/// let pair = Arc::new((Mutex::new(false), Condvar::new()));
/// let pair2 = pair.clone();
///
/// // Inside of our lock, spawn a new thread, and then wait for it to start
/// thread::spawn(move|| {
///     let &(ref lock, ref cvar) = &*pair2;
///     let mut started = lock.lock().unwrap();
///     *started = true;
///     cvar.notify_one();
/// });
///
/// // wait for the thread to start up
/// let &(ref lock, ref cvar) = &*pair;
/// let mut started = lock.lock().unwrap();
/// while !*started {
///     started = cvar.wait(started).unwrap();
/// }
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
pub struct Condvar { inner: Box<StaticCondvar> }

unsafe impl Send for Condvar {}
unsafe impl Sync for Condvar {}

/// Statically allocated condition variables.
///
/// This structure is identical to `Condvar` except that it is suitable for use
/// in static initializers for other structures.
///
/// # Example
///
/// ```
/// use std::sync::{StaticCondvar, CONDVAR_INIT};
///
/// static CVAR: StaticCondvar = CONDVAR_INIT;
/// ```
#[unstable(feature = "std_misc",
           reason = "may be merged with Condvar in the future")]
pub struct StaticCondvar {
    inner: sys::Condvar,
    mutex: AtomicUsize,
}

unsafe impl Send for StaticCondvar {}
unsafe impl Sync for StaticCondvar {}

/// Constant initializer for a statically allocated condition variable.
#[unstable(feature = "std_misc",
           reason = "may be merged with Condvar in the future")]
pub const CONDVAR_INIT: StaticCondvar = StaticCondvar {
    inner: sys::CONDVAR_INIT,
    mutex: ATOMIC_USIZE_INIT,
};

impl Condvar {
    /// Creates a new condition variable which is ready to be waited on and
    /// notified.
    #[stable(feature = "rust1", since = "1.0.0")]
    pub fn new() -> Condvar {
        Condvar {
            inner: box StaticCondvar {
                inner: unsafe { sys::Condvar::new() },
                mutex: AtomicUsize::new(0),
            }
        }
    }

    /// Block the current thread until this condition variable receives a
    /// notification.
    ///
    /// This function will atomically unlock the mutex specified (represented by
    /// `mutex_guard`) and block the current thread. This means that any calls
    /// to `notify_*()` which happen logically after the mutex is unlocked are
    /// candidates to wake this thread up. When this function call returns, the
    /// lock specified will have been re-acquired.
    ///
    /// Note that this function is susceptible to spurious wakeups. Condition
    /// variables normally have a boolean predicate associated with them, and
    /// the predicate must always be checked each time this function returns to
    /// protect against spurious wakeups.
    ///
    /// # Failure
    ///
    /// This function will return an error if the mutex being waited on is
    /// poisoned when this thread re-acquires the lock. For more information,
    /// see information about poisoning on the Mutex type.
    ///
    /// # Panics
    ///
    /// This function will `panic!()` if it is used with more than one mutex
    /// over time. Each condition variable is dynamically bound to exactly one
    /// mutex to ensure defined behavior across platforms. If this functionality
    /// is not desired, then unsafe primitives in `sys` are provided.
    #[stable(feature = "rust1", since = "1.0.0")]
    pub fn wait<'a, T>(&self, guard: MutexGuard<'a, T>)
                       -> LockResult<MutexGuard<'a, T>> {
        unsafe {
            let me: &'static Condvar = &*(self as *const _);
            me.inner.wait(guard)
        }
    }

    /// Wait on this condition variable for a notification, timing out after a
    /// specified duration.
    ///
    /// The semantics of this function are equivalent to `wait()` except that
    /// the thread will be blocked for roughly no longer than `dur`. This method
    /// should not be used for precise timing due to anomalies such as
    /// preemption or platform differences that may not cause the maximum amount
    /// of time waited to be precisely `dur`.
    ///
    /// If the wait timed out, then `false` will be returned. Otherwise if a
    /// notification was received then `true` will be returned.
    ///
    /// Like `wait`, the lock specified will be re-acquired when this function
    /// returns, regardless of whether the timeout elapsed or not.
    #[unstable(feature = "std_misc")]
    pub fn wait_timeout<'a, T>(&self, guard: MutexGuard<'a, T>, dur: Duration)
                           -> LockResult<(MutexGuard<'a, T>, bool)> {
        unsafe {
            let me: &'static Condvar = &*(self as *const _);
            me.inner.wait_timeout(guard, dur)
        }
    }

    /// Wait on this condition variable for a notification, timing out after a
    /// specified duration.
    ///
    /// The semantics of this function are equivalent to `wait_timeout` except
    /// that the implementation will repeatedly wait while the duration has not
    /// passed and the provided function returns `false`.
    #[unstable(feature = "std_misc")]
    pub fn wait_timeout_with<'a, T, F>(&self,
                                       guard: MutexGuard<'a, T>,
                                       dur: Duration,
                                       f: F)
                                       -> LockResult<(MutexGuard<'a, T>, bool)>
            where F: FnMut(LockResult<&mut T>) -> bool {
        unsafe {
            let me: &'static Condvar = &*(self as *const _);
            me.inner.wait_timeout_with(guard, dur, f)
        }
    }

    /// Wake up one blocked thread on this condvar.
    ///
    /// If there is a blocked thread on this condition variable, then it will
    /// be woken up from its call to `wait` or `wait_timeout`. Calls to
    /// `notify_one` are not buffered in any way.
    ///
    /// To wake up all threads, see `notify_all()`.
    #[stable(feature = "rust1", since = "1.0.0")]
    pub fn notify_one(&self) { unsafe { self.inner.inner.notify_one() } }

    /// Wake up all blocked threads on this condvar.
    ///
    /// This method will ensure that any current waiters on the condition
    /// variable are awoken. Calls to `notify_all()` are not buffered in any
    /// way.
    ///
    /// To wake up only one thread, see `notify_one()`.
    #[stable(feature = "rust1", since = "1.0.0")]
    pub fn notify_all(&self) { unsafe { self.inner.inner.notify_all() } }
}

#[stable(feature = "rust1", since = "1.0.0")]
impl Drop for Condvar {
    fn drop(&mut self) {
        unsafe { self.inner.inner.destroy() }
    }
}

impl StaticCondvar {
    /// Block the current thread until this condition variable receives a
    /// notification.
    ///
    /// See `Condvar::wait`.
    #[unstable(feature = "std_misc",
               reason = "may be merged with Condvar in the future")]
    pub fn wait<'a, T>(&'static self, guard: MutexGuard<'a, T>)
                       -> LockResult<MutexGuard<'a, T>> {
        let poisoned = unsafe {
            let lock = mutex::guard_lock(&guard);
            self.verify(lock);
            self.inner.wait(lock);
            mutex::guard_poison(&guard).get()
        };
        if poisoned {
            Err(PoisonError::new(guard))
        } else {
            Ok(guard)
        }
    }

    /// Wait on this condition variable for a notification, timing out after a
    /// specified duration.
    ///
    /// See `Condvar::wait_timeout`.
    #[unstable(feature = "std_misc",
               reason = "may be merged with Condvar in the future")]
    pub fn wait_timeout<'a, T>(&'static self, guard: MutexGuard<'a, T>, dur: Duration)
                               -> LockResult<(MutexGuard<'a, T>, bool)> {
        let (poisoned, success) = unsafe {
            let lock = mutex::guard_lock(&guard);
            self.verify(lock);
            let success = self.inner.wait_timeout(lock, dur);
            (mutex::guard_poison(&guard).get(), success)
        };
        if poisoned {
            Err(PoisonError::new((guard, success)))
        } else {
            Ok((guard, success))
        }
    }

    /// Wait on this condition variable for a notification, timing out after a
    /// specified duration.
    ///
    /// The implementation will repeatedly wait while the duration has not
    /// passed and the function returns `false`.
    ///
    /// See `Condvar::wait_timeout_with`.
    #[unstable(feature = "std_misc",
               reason = "may be merged with Condvar in the future")]
    pub fn wait_timeout_with<'a, T, F>(&'static self,
                                       guard: MutexGuard<'a, T>,
                                       dur: Duration,
                                       mut f: F)
                                       -> LockResult<(MutexGuard<'a, T>, bool)>
            where F: FnMut(LockResult<&mut T>) -> bool {
        // This could be made more efficient by pushing the implementation into sys::condvar
        let start = SteadyTime::now();
        let mut guard_result: LockResult<MutexGuard<'a, T>> = Ok(guard);
        while !f(guard_result
                    .as_mut()
                    .map(|g| &mut **g)
                    .map_err(|e| PoisonError::new(&mut **e.get_mut()))) {
            let now = SteadyTime::now();
            let consumed = &now - &start;
            let guard = guard_result.unwrap_or_else(|e| e.into_inner());
            let (new_guard_result, no_timeout) = match self.wait_timeout(guard, dur - consumed) {
                Ok((new_guard, no_timeout)) => (Ok(new_guard), no_timeout),
                Err(err) => {
                    let (new_guard, no_timeout) = err.into_inner();
                    (Err(PoisonError::new(new_guard)), no_timeout)
                }
            };
            guard_result = new_guard_result;
            if !no_timeout {
                let result = f(guard_result
                                    .as_mut()
                                    .map(|g| &mut **g)
                                    .map_err(|e| PoisonError::new(&mut **e.get_mut())));
                return poison::map_result(guard_result, |g| (g, result));
            }
        }

        poison::map_result(guard_result, |g| (g, true))
    }

    /// Wake up one blocked thread on this condvar.
    ///
    /// See `Condvar::notify_one`.
    #[unstable(feature = "std_misc",
               reason = "may be merged with Condvar in the future")]
    pub fn notify_one(&'static self) { unsafe { self.inner.notify_one() } }

    /// Wake up all blocked threads on this condvar.
    ///
    /// See `Condvar::notify_all`.
    #[unstable(feature = "std_misc",
               reason = "may be merged with Condvar in the future")]
    pub fn notify_all(&'static self) { unsafe { self.inner.notify_all() } }

    /// Deallocate all resources associated with this static condvar.
    ///
    /// This method is unsafe to call as there is no guarantee that there are no
    /// active users of the condvar, and this also doesn't prevent any future
    /// users of the condvar. This method is required to be called to not leak
    /// memory on all platforms.
    #[unstable(feature = "std_misc",
               reason = "may be merged with Condvar in the future")]
    pub unsafe fn destroy(&'static self) {
        self.inner.destroy()
    }

    fn verify(&self, mutex: &sys_mutex::Mutex) {
        let addr = mutex as *const _ as uint;
        match self.mutex.compare_and_swap(0, addr, Ordering::SeqCst) {
            // If we got out 0, then we have successfully bound the mutex to
            // this cvar.
            0 => {}

            // If we get out a value that's the same as `addr`, then someone
            // already beat us to the punch.
            n if n == addr => {}

            // Anything else and we're using more than one mutex on this cvar,
            // which is currently disallowed.
            _ => panic!("attempted to use a condition variable with two \
                         mutexes"),
        }
    }
}

#[cfg(test)]
mod tests {
    use prelude::v1::*;

    use super::{StaticCondvar, CONDVAR_INIT};
    use sync::mpsc::channel;
    use sync::{StaticMutex, MUTEX_INIT, Condvar, Mutex, Arc};
    use sync::atomic::{AtomicUsize, ATOMIC_USIZE_INIT, Ordering};
    use thread;
    use time::Duration;

    #[test]
    fn smoke() {
        let c = Condvar::new();
        c.notify_one();
        c.notify_all();
    }

    #[test]
    fn static_smoke() {
        static C: StaticCondvar = CONDVAR_INIT;
        C.notify_one();
        C.notify_all();
        unsafe { C.destroy(); }
    }

    #[test]
    fn notify_one() {
        static C: StaticCondvar = CONDVAR_INIT;
        static M: StaticMutex = MUTEX_INIT;

        let g = M.lock().unwrap();
        let _t = thread::spawn(move|| {
            let _g = M.lock().unwrap();
            C.notify_one();
        });
        let g = C.wait(g).unwrap();
        drop(g);
        unsafe { C.destroy(); M.destroy(); }
    }

    #[test]
    fn notify_all() {
        const N: uint = 10;

        let data = Arc::new((Mutex::new(0), Condvar::new()));
        let (tx, rx) = channel();
        for _ in 0..N {
            let data = data.clone();
            let tx = tx.clone();
            thread::spawn(move|| {
                let &(ref lock, ref cond) = &*data;
                let mut cnt = lock.lock().unwrap();
                *cnt += 1;
                if *cnt == N {
                    tx.send(()).unwrap();
                }
                while *cnt != 0 {
                    cnt = cond.wait(cnt).unwrap();
                }
                tx.send(()).unwrap();
            });
        }
        drop(tx);

        let &(ref lock, ref cond) = &*data;
        rx.recv().unwrap();
        let mut cnt = lock.lock().unwrap();
        *cnt = 0;
        cond.notify_all();
        drop(cnt);

        for _ in 0..N {
            rx.recv().unwrap();
        }
    }

    #[test]
    fn wait_timeout() {
        static C: StaticCondvar = CONDVAR_INIT;
        static M: StaticMutex = MUTEX_INIT;

        let g = M.lock().unwrap();
        let (g, _no_timeout) = C.wait_timeout(g, Duration::nanoseconds(1000)).unwrap();
        // spurious wakeups mean this isn't necessarily true
        // assert!(!no_timeout);
        let _t = thread::spawn(move || {
            let _g = M.lock().unwrap();
            C.notify_one();
        });
        let (g, no_timeout) = C.wait_timeout(g, Duration::days(1)).unwrap();
        assert!(no_timeout);
        drop(g);
        unsafe { C.destroy(); M.destroy(); }
    }

    #[test]
    fn wait_timeout_with() {
        static C: StaticCondvar = CONDVAR_INIT;
        static M: StaticMutex = MUTEX_INIT;
        static S: AtomicUsize = ATOMIC_USIZE_INIT;

        let g = M.lock().unwrap();
        let (g, success) = C.wait_timeout_with(g, Duration::nanoseconds(1000), |_| false).unwrap();
        assert!(!success);

        let (tx, rx) = channel();
        let _t = thread::spawn(move || {
            rx.recv().unwrap();
            let g = M.lock().unwrap();
            S.store(1, Ordering::SeqCst);
            C.notify_one();
            drop(g);

            rx.recv().unwrap();
            let g = M.lock().unwrap();
            S.store(2, Ordering::SeqCst);
            C.notify_one();
            drop(g);

            rx.recv().unwrap();
            let _g = M.lock().unwrap();
            S.store(3, Ordering::SeqCst);
            C.notify_one();
        });

        let mut state = 0;
        let (_g, success) = C.wait_timeout_with(g, Duration::days(1), |_| {
            assert_eq!(state, S.load(Ordering::SeqCst));
            tx.send(()).unwrap();
            state += 1;
            match state {
                1|2 => false,
                _ => true,
            }
        }).unwrap();
        assert!(success);
    }

    #[test]
    #[should_fail]
    fn two_mutexes() {
        static M1: StaticMutex = MUTEX_INIT;
        static M2: StaticMutex = MUTEX_INIT;
        static C: StaticCondvar = CONDVAR_INIT;

        let mut g = M1.lock().unwrap();
        let _t = thread::spawn(move|| {
            let _g = M1.lock().unwrap();
            C.notify_one();
        });
        g = C.wait(g).unwrap();
        drop(g);

        let _ = C.wait(M2.lock().unwrap()).unwrap();
    }
}